Judyta Bąk
Judyta Bąk: Domain theory and topological games
22/03/17 09:21
Tuesday, March 28, 2017 17:15
Room: D1-215
Speaker: Judyta Bąk
Title: Domain theory and topological games
Abstract. Domain is a partially ordered set, in which there was introduced some specific relation. We say that a space is domain representable if it is homeomorphic to a space of maximal elements of some domain. In 2015 W. Fleissner and L. Yengulalp introduced a notion of \(\pi\)-domain representable space, which is analogous of domain representable. We prove that a player \(\alpha\) has a winning strategy in the Banach--Mazur game on a space \(X\) if and only if \(X\) is countably \(\pi\)-domain representable. We give an example of countably \(\pi\)-domain representable space, which is not \(\pi\)-domain representable.
Room: D1-215
Speaker: Judyta Bąk
Title: Domain theory and topological games
Abstract. Domain is a partially ordered set, in which there was introduced some specific relation. We say that a space is domain representable if it is homeomorphic to a space of maximal elements of some domain. In 2015 W. Fleissner and L. Yengulalp introduced a notion of \(\pi\)-domain representable space, which is analogous of domain representable. We prove that a player \(\alpha\) has a winning strategy in the Banach--Mazur game on a space \(X\) if and only if \(X\) is countably \(\pi\)-domain representable. We give an example of countably \(\pi\)-domain representable space, which is not \(\pi\)-domain representable.