# Barnabas Farkas: Cardinal invariants versus towers in analytic P-ideals / An application of matrix iteration

06/11/17 21:20

Tuesday, November 7, 2017 17:15

Model1 of \(\mathrm{non}^*(\mathcal{I})=\mathfrak{c}\), there is a tower in \(\mathcal{I}\), and \(\mathrm{add}^*(\mathcal{I})<\mathrm{cov}^*(\mathcal{I})\). Method: Small filter iteration.

Model2 of \(\mathrm{non}^*(\mathcal{I})<\mathfrak{c}\), there is a tower in \(\mathcal{I}\), and \(\mathrm{add}^*(\mathcal{I})<\mathrm{cov}^*(\mathcal{I})\). Method: Matrix iteration.

This is a joint work with J. Brendle and J. Verner.

*Room:*D1-215*Barnabas Farkas (TU Wien)*

Speaker:Speaker:

*Title*: Cardinal invariants versus towers in analytic P-ideals / An application of matrix iteration*Abstract*. I will present two models concerning interactions between the existence of towers in analytic P-ideals and their cardinal invariants. It is trivial to see that if there is no tower in \(\mathcal{I}\), then \(\mathrm{add}^*(\mathcal{I})<\mathrm{cov}^*(\mathcal{I})\). I will prove that this implication cannot be reversed no matter the value of \(\mathrm{non}^*(\mathcal{I})\). More precisely, let \(\mathcal{I}\) be an arbitrary tall analytic P-ideal, I will construct the following two models:Model1 of \(\mathrm{non}^*(\mathcal{I})=\mathfrak{c}\), there is a tower in \(\mathcal{I}\), and \(\mathrm{add}^*(\mathcal{I})<\mathrm{cov}^*(\mathcal{I})\). Method: Small filter iteration.

Model2 of \(\mathrm{non}^*(\mathcal{I})<\mathfrak{c}\), there is a tower in \(\mathcal{I}\), and \(\mathrm{add}^*(\mathcal{I})<\mathrm{cov}^*(\mathcal{I})\). Method: Matrix iteration.

This is a joint work with J. Brendle and J. Verner.